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Abstract
Background and objective
The diagnosis of periprosthetic joint infection (PJI) relies on established criteria-based systems requiring
interpretation and combination of multiple laboratory tests into scoring systems. In routine clinical care,
clinicians implement these algorithms to diagnose PJI. Existing literature indicates suboptimal adoption and
implementation of these criteria in clinical practice, even among experts. Recognizing the need for accurate
PJI diagnosis through proper synthesis of multiple laboratory parameters, this study aimed to develop and
validate a machine learning (ML) model that generates a preoperative PJI probability score based solely on
synovial fluid (SF) biomarkers within 24 hours.

Materials and methods
A two-stage ML model was constructed using 104,090 SF samples from 2,923 institutions (2018-2024). First,
unsupervised learning identified natural clusters in the data to label samples as “infected” or “not
infected.” Then, these labels trained a supervised logistic regression model that generated PJI scores (0-100),
categorizing cases as PJI positive (> 80), PJI negative (< 20), or equivocal (20-80).

The model incorporated 10 SF biomarkers: specimen integrity markers (absorbance at 280 nm, red blood cell
count), inflammatory markers (white blood cell count, percentage of neutrophils, SF C-reactive protein), a
PJI-specific biomarker (alpha-defensin), and microbial antigen markers (Staphylococcus, Enterococcus,
Candida, and Cutibacterium acnes). Notably, culture results were excluded to allow for a 24-hour diagnosis.
After splitting data into training (n = 83,272) and validation (n = 20,818) cohorts, performance was assessed
against modified 2018 International Consensus Meeting criteria, including evaluation with probabilistically
reclassified "inconclusive" cases.

Results
The ML model and resulting PJI score showed high diagnostic accuracy in the validation cohort. The PJI
score achieved 99.3% sensitivity and 99.5% specificity versus the clinical reference before reclassification of
inconclusive cases and 98.1% sensitivity and 97.6% specificity after probabilistic reclassification. With a
disease prevalence of 20.7%, the positive predictive value reached 91.5% and the negative predictive value
99.5%. The model resolved 95% (1,363/1,442) of samples deemed inconclusive by the clinical standard. The
analysis identified alpha defensin, percentage of neutrophils, and white blood cell count as the most
influential model features. The model performed well in culture-negative infections.

Conclusions
The ML model and resulting PJI score demonstrated exceptional diagnostic accuracy by leveraging
unsupervised SF biomarker pattern clustering. The model substantially reduced diagnostic uncertainty by
definitively classifying most inconclusive cases, revealing their natural alignment with infected or non-
infected patterns. This performance was achieved without SF culture results, enabling definitive diagnostic
information within 24 hours based solely on biomarkers. The clinical significance demonstrates that an ML
algorithm can match the diagnostic accuracy of complex clinical standards while transferring analytical
complexity from clinicians to laboratories, minimizing the implementation gap that hinders current criteria-
based approaches.
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Introduction
Periprosthetic joint infection (PJI) is a deeply concerning complication, affecting 1-2% of primary joint
replacements and threatening patient outcomes [1]. Consequences of PJI include limb loss, death, and
staggering economic costs for healthcare systems and patients [1,2]. Due to longstanding diagnostic
challenges, academic bodies have advocated criteria-based systems to establish a standardized PJI definition
[3,4]. Yet, as commonly seen in medicine, these definitions remain underutilized by clinicians. Many fail to
order necessary tests, while others struggle to integrate diverse results and scoring systems accurately [5,6].
Even PJI experts unknowingly misapply specific thresholds or definitions [7-9]. Thus, there is a critical need
for diagnostic tools that combine high accuracy with clinical usability, enabling all clinicians to leverage
expert-level criteria effectively.

To address the need for a reliable, actionable preoperative diagnostic PJI tool, a machine learning (ML)
model was previously developed to indicate the probability that PJI is present based on a standard set of
synovial fluid (SF) biomarkers [10]. This previous work demonstrated the feasibility of an algorithm that
utilized a pilot dataset. Building on this foundational work, the model was refined with a larger dataset and
developed on a secured infrastructure using Azure Machine Learning (Microsoft Corp., Redmond, WA, USA)
integrated with the laboratory information system (LIS). This integration enables an automated delivery of a
PJI score alongside standard biomarker results within 24 hours of receipt of the patient's SF by the
laboratory. The novel approach of a rapid ML-based PJI score delivered within a secured network presents
advancements to the field beyond existing diagnostic methods.

This study aimed to evaluate the clinical performance of the ML-enabled PJI probability score and its ability
to diagnose PJI against a clinical reference. Additionally, the study presents the performance of the PJI score
in culture-negative PJI and inconclusive samples. Finally, the contributions of each biomarker within the
model were elucidated by employing Shapley additive explanations (SHAP) [10-12].

Materials And Methods
Study design
We utilized real-world clinical SF biomarker results to create an ML-based PJI probability algorithm and
assess its concurrence with a clinical reference definition of PJI (2018 ICM) [3]. A total of 137,691 samples
from 2,923 institutions were tested at a single clinical laboratory between 2018 and 2024, and the data were
deidentified in accordance with approval from the WIRB-Copernicus Group Institutional Review Board
(approval number: 20150222). No institution accounted for more than 1.5% of the total sample set, and
samples were tested from across the United States, ensuring a relevant and representative dataset. The study
was conducted in accordance with the principles of the Transparent Reporting of Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD+AI) reporting guidelines [13]. Productivity tools based
on the GPT-4 architecture were utilized for copy-editing purposes only; those tools were not used to
generate new content or concepts. This study has not been submitted to or evaluated by another journal.

Study data
SF samples from the hip or knee joint of adult patients (18 years or older) submitted for comprehensive PJI
testing that underwent microbiological culture and assay for all 11 biomarkers were included. Samples with
compromised integrity (red blood cells (RBC) > 1,000,000 cells/µl or absorbance at 280 nm wavelength (A280)
outside of the range indicative of SF) were excluded [14]. We also excluded samples that were not cultured
(Table 1). The total dataset of 104,090 samples was split into a training (80%, n = 83,272) and validation
(20%, n = 20,818) cohort, with the most recent 20% allocated for validation. The training set was randomized
and further split into a derivation (n = 66,617) and testing cohort (n = 16,655), where the algorithm was
derived and tested prior to assessing performance with the previously unseen validation data.
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Criteria
No. of
samples

Inclusion
criteria

Patients with a hip or knee arthroplasty

120,677
Comprehensive SF testing performed for PJI

Adult patients (age ≥ 18)

Specimen integrity biomarkers RBC and A280

Exclusion
criteria

Specimen substantially diluted with blood (RBC > 1,000,000/μL) or specimen integrity compromised (A280
< 0.342 or A280 > 1.19)

10,445

Not tested for culture 6,142

Total samples used in the study 104,090

TABLE 1: Inclusion and exclusion criteria
A280: optical density (absorbance) measured at 280 nanometer wavelength, RBC: red blood cell, PJI: periprosthetic joint infection, SF: synovial fluid

Data collection
All SF specimens were submitted to a central clinical laboratory for comprehensive diagnostic testing (CD
Laboratories, Zimmer Biomet, Towson, MD [15]). The available input biomarkers (i.e., ML features), all
derived from the SF samples, included two specimen integrity biomarkers (A280 and RBC); three general
inflammatory biomarkers (white blood cell count (WBC), percentage of polymorphonuclear cells (PMN%),
and SF-C-reactive protein (SF-CRP)); one PJI-specific host-response biomarker (alpha defensin (AD));
and five direct microbial antigen detection biomarkers (two Staphylococcus targets (SPA and
SPB), Enterococcus target (EF), Candida target (CP), and Cutibacterium acnes target (PAC)) (Table 2).

Test name Biomarker Test platform/technology used

Specimen integrity A280 Spectrophotometry (A280)

WBC and RBC and
differential

WBC

Cell counter: Sysmex® XN-2000 (automated) or AO Spencer 878784 (manual)PMN%

RBC

AD AD ELISA

CRP SF-CRP
Immuno-complex captured by antibody-coated latex particles detected on the Beckman Coulter
AU480/AU680 clinical chemistry analyzer

MID

EF

Immunometric beads detected on Luminex 200®

CP

PAC

SPA

SPB

TABLE 2: Biomarker testing
A280: optical density (absorbance) measured at 280 nanometer wavelength, WBC: white blood cell, PMN%: percentage of neutrophils, RBC: red blood
cell, AD: alpha-defensin, SF-CRP: synovial fluid C-reactive protein, CR: C-reactive protein, EF: microbial antigen test Enterococcus species panel, CP:
microbial antigen test Candida species panel, PAC: microbial antigen test Cutibacterium acnes panel, SPA: microbial antigen test Staphylococcus species
panel A, SPB: microbial antigen test Staphylococcus species panel B, MID: microbial identification panel, ELISA: enzyme-linked immunosorbent assay

Machine learning model development
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Two-Stage Model Training Pipeline

There were three primary design requirements: (1) to create a ML model capable of predicting the
probability of PJI independent of existing diagnostic labels using unsupervised ML techniques to identify
intrinsic patterns in the data, (2) to enhance diagnostic performance on samples designated as inconclusive
using a current diagnostic definition such as the 2018 International Consensus Meeting (ICM), and (3) to
optimize clinical decision limits for intuitive decision making. These requirements led to the development
of a two-stage model training pipeline incorporating unsupervised and supervised methodologies (Figure 1).

FIGURE 1: Two-stage model training pipeline that incorporated
unsupervised and supervised methodologies. Feature selection refers
to the set of input biomarkers used for each stage. Feature scaling
refers to linear and non-linear transformations applied to the selected
input biomarkers
SF: synovial fluid, PJI: periprosthetic joint infection

The two-stage model training pipeline was developed and implemented using Azure Machine Learning
(Microsoft Corp., Redmond, WA, USA) and Python 3.10 (Python Software Foundation, Wilmington, DE,
USA). The two primary components of this pipeline were the Labeling Model Pipeline and the PJI Score
Model Pipeline (SynTuition™ Score, CD Laboratories, Towson, MD, USA), both implemented using scikit-
learn (version 1.6.1, scikit-learn developers).

Labeling Model Pipeline

The Labeling Model Pipeline processed unlabeled training data and used unsupervised methods to infer
infected/not infected labels.

As listed in the Data Collection section, 11 input biomarkers (i.e., features) were utilized. PMN% and A280
were scaled using a standard scaler. A Yeo-Johnson transformation [16] followed by a standard scalar was
applied to RBC, WBC, SF-CRP, AD, EF, CP, PAC, SPA, and SPB. This combination of transformation and
scaling normalized each feature so they shared a similar distribution and scale prior to unsupervised
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learning steps.

Principal component analysis (PCA) was applied to reduce dimensionality, resulting in five principal
components preserving at least 85% of the total variance. The remaining components were discarded. A
Gaussian mixture model (GMM) with a tied covariance structure and two mixture components was used to
cluster the five principal components. The GMM, a probabilistic model, provided a density estimation
(Figure 2, Panel A), which was used to assign samples to each cluster based on a probability threshold
(Figure 2, Panel B). Two distinct clusters emerged, and high inflammatory biomarker values and a high
culture positivity rate characterized samples in one of the two clusters. This cluster was assigned as the
Infected cluster, and the other as not infected. Training samples that exceeded a 0.95 probability threshold
for the Infected cluster were labeled Infected (Figure 2, Panel C), while all other samples were labeled not
infected. Using a 0.95 probability threshold to assign labels as Infected yielded a proportion of Infected
labels that appeared consistent with the anticipated disease prevalence [17,18].

FIGURE 2: Visualization of unsupervised and supervised learning
stages limited to two PCA components and a random subset of the
training samples (n = 1,000). Each panel includes the 0.95 probability
threshold, determined by the GMM prediction, as a dashed line.
Training samples that exceeded a 0.95 probability threshold for the
infected cluster were labeled infected, while all other samples were
labeled not infected
Panel A: The labeling model GMM density estimation. Panel B: The labeling model GMM prediction for the
infected cluster probability. Note that the GMM tied covariance structure results in a linear separation between
clusters. Panel C: The labeled subset of training samples. Panel D: The PJI score model logistic regression
prediction.

PCA: principal component analysis, GMM: Gaussian mixture model, PJI: periprosthetic joint infection

PJI Score Model Pipeline

The PJI score Model Pipeline used supervised learning to classify labeled data and generate a probabilistic
score for PJI.

Ten input features were used, including the same features from the Labeling Modeling Pipeline, except that
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SPA and SPB were replaced by their composite sum (SP Sum) to improve interpretability. Feature
transformation and scaling were identical to those in the Labeling Model Pipeline. The SP Sum feature uses
a Yeo-Johnson transformation followed by a standard scalar.

A logistic regression model was trained on 80% of the labeled training data (the derivation cohort), with
performance evaluated on the remaining 20% (testing cohort). The model produced a probability score for
the Infected class, which was subsequently scaled to an integer percentage, referred to as the PJI score
(Figure 2, Panel D). A regularization term was incorporated into the logistic regression model training to
mitigate the risk of complete separation. Complete separation can arise due to the perfect linear separation
between labels imposed by the GMM, leading to instability in logistic regression training. A weak L2
regularization term (λ = 1.0) addressed this issue by ensuring robust parameter estimation [19].

Performance assessment
Clinical decision limits were set to classify samples into three categories. A PJI score above 80 indicates a
high probability of infection (i.e., PJI positive), while a score below 20 indicates a low probability of infection
(i.e., PJI negative). Scores between 20 and 80 are considered equivocal. These limits were chosen using
receiver operator characteristic (ROC) curve analysis of the derivation set prior to validation (Table 3). These
chosen decision limits ensure high sensitivity (99.1% at PJI score > 80) and specificity (99.4% at PJI score <
20) and align with physician feedback on preferred decision limits for clinical utility and decision-making.
Classifying PJI scores into distinct clinical categories enabled the performance evaluation using an existing
clinical reference.

PJI score Sensitivity (%) Specificity (%)

90 98.9 99.7

80 99.1 99.7

70 99.2 99.6

60 99.2 99.6

50 99.3 99.6

40 99.3 99.5

30 99.3 99.5

20 99.4 99.4

10 99.5 99.3

TABLE 3: Impact of decision limits for a PJI positive diagnosis using the PJI score. Sensitivity
and specificity are calculated based on the derivation cohort. Inconclusive diagnoses by clinical
reference are not included
PJI: periprosthetic joint infection

Performance of the PJI score was compared to a modified 2018 ICM [3] criteria as the clinical reference,
where SF-CRP was used in place of serum CRP in accordance with previous validation [20]. 2018 ICM was
selected as the clinical reference due to its general acceptance as a valid definition of PJI, particularly in the
United States, where the PJI score will be deployed. Since the PJI score is intended to be applied to specific,
comprehensive SF test results to aid PJI diagnosis preoperatively, only preoperative SF components of the
2018 ICM were used to establish infection classification (Table 4).
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Condition Score

WBC > 3,000 cells/μL or AD S/CO ≥1.00 3 points

PMN% > 70% 2 points

SF-CRP > 4.45 mg/L 2 points

Positive culture result 2 points

TABLE 4: Criteria used to establish infection classification using the clinical reference. Infection
was classified as follows: ≥ 6 points: PJI positive; ≤ 2 points: PJI negative; and 3-5 points:
inconclusive
WBC: white blood cell, S/CO: signal to cutoff, PMN%: percentage of neutrophils, SF-CRP: synovial fluid C-reactive protein, AD: alpha-defensin

Comparing the PJI score to the modified 2018 ICM definition provides a foundational reference point for
clinicians. However, the presence of the inconclusive category prevents a true qualitative comparison.
Simply discarding this category would lead to a flawed performance evaluation by ignoring the most
difficult-to-predict cases. To better represent the performance of the PJI score, a probabilistic approach was
used to establish rules for reclassifying inconclusive cases as “PJI positive” or “PJI negative” (Table 5). This
method applies the combined specificity and sensitivity of each possible combination of biomarker results. It
classifies the sample as positive if the combined specificity is higher than the combined sensitivity (i.e., the
false positive rate is lower than the false negative rate) and as negative if the combined sensitivity is higher
than the combined specificity (i.e., the false negative rate is lower than the false positive rate). Thus, all
possible combinations of biomarkers leading to clinical reference scores of 3, 4, and 5 were evaluated and
classified as PJI positive or PJI negative.

Biomarker Specificity Sensitivity False positive rate False negative rate

Culture 99.5% 72.4% 0.0047 0.276

AD 97.4% 94.9% 0.026 0.051

MID 98.4% 73.8% 0.016 0.262

WBC 91.2% 80.6% 0.088 0.194

PMN% 84.3% 84.7% 0.157 0.153

SF-CRP 87.1% 86.1% 0.129 0.139

TABLE 5: Specificity and sensitivity of individual SF biomarkers used to develop reclassification
rules. MID includes a positive microbial identification using a combination of the five microbial
antigen detection biomarkers
Culture [21,22], AD: alpha-defensin [15], MID: microbial identification panel [21], WBC: white blood cell [23], PMN%: percentage of neutrophils [23], SF-
CRP: synovial fluid C-reactive protein [20]

The PJI score was generated for every sample in the validation cohort, which had been previously set aside,
and classified as PJI positive, PJI negative, or equivocal using the clinical decision limits. Sensitivity,
specificity, positive predictive value (PPV), and negative predictive value (NPV) were assessed before and
after reclassification of the inconclusive category. Results classed as equivocal by the PJI score for all
performance assessments were treated as false.

Model interpretability
SHAP values were calculated for each training and validation sample to support the interpretability of
the PJI score model. All SHAP values were computed using the Python shap package 0.46.0 (Scott Lundberg).

Statistical analysis
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To ensure a sufficiently narrow confidence interval of ±2% and to meet the minimum a priori performance
requirement of 95% sensitivity and specificity, the minimum required sample size was calculated to be at
least 280 infected samples [24]. The number of infected samples in the validation set exceeded this minimum
requirement. Due to their nonparametric distributions, continuous biomarker variables are presented as
median (interquartile range, Q1 - Q3). The Mann-Whitney U test was utilized to assess differences between
these variables. Cohen's d was then calculated based on the medians to determine the effect size,
categorized as follows: very small (d < 0.2), small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8), and large (d ≥ 0.8).
The 95% confidence intervals (CI) for clinical performance metrics were calculated using the Wilson method.
Differences between clinical subgroups were assessed using the two-proportion Z-test for comparisons
between two subgroups or the Chi-square goodness-of-fit test for comparisons across multiple subgroups.

Results
Baseline characteristics
A total of 104,090 SF samples were included in the study, with 83,272 included in the training cohort (66,617
derivation and 16,655 testing) and 20,818 in the validation cohort. Using the clinical reference, 18.3% of
samples were PJI positive, 74.7% PJI negative, and 7.0% inconclusive. After reclassification of the
inconclusive category, 41.0% of inconclusive samples were classified as PJI positive and 59.0% as PJI
negative, resulting in 21.2% PJI positive and 78.8% PJI negative across all samples included in the study.
Table 6 provides the split between training and validation cohorts.

Variable Training (n = 83,272) Validation (n = 20,818)

Time period Jan 2018-Aug 2023 Aug 2023-Jul 2024

Organizations (count, samples per org) 2,548 (1-1,391) 1,699 (1-275)

Age (median (IQR)) 66 (60-73) 68 (61-71)

Gender (samples, no. (%))

Male 43,255 (51.9) 11,005 (52.9)

Female 39,976 (48.1) 9,792 (47.0)

Unknown 41 (0.0) 21 (0.1)

Joint type (samples, no. (%))

Knee joint 76,562 (91.9) 19,168 (92.1)

Hip joint 6,710 (8.1) 1,650 (7.9)

Culture (samples, no. (%))

Negative 72,108 (86.6) 17,959 (86.3)

Positive 11,164 (13.4) 2,859 (13.7)

Infection classification based on clinical reference (samples, no. (%))

PJI negative 62,130 (74.6) 15,597 (74.9)

PJI positive 15,302 (18.4) 3,779 (18.2)

Inconclusive 5,840 (7.0) 1,442 (6.9)

Infection classification after reclassification of the inconclusive category (samples, no. (%))

PJI negative 65,514 (78.7) 16,510 (79.3)

PJI positive 17,758 (21.3) 4,308 (20.7)

TABLE 6: SF samples and characteristics between training (derivation and testing) and validation
cohorts
IQR: interquartile range, PJI: periprosthetic joint infection, SF: synovial fluid

Machine learning model development
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Labeling Model

The labeling model used 11 features to cluster and label the training samples. Of these, 18,635 (22.4%)
were labeled Infected (Table 7). The cluster used to label samples as infected showed higher values across all
biomarkers (i.e., features).

 Feature
Not infected, median (IQR) Infected, median (IQR)

n = 64,637 n =18,635

PMN% 33.6 (24.1-46.5) 92.0 (85.2-95.3)

A280 0.59 (0.51-0.68) 0.80 (0.71-0.90)

CP 0.43 (0.38-0.5) 0.72 (0.63-0.84)

RBC 14,000 (5,000-45,000) 25,000 (10,000-68,000)

WBC 503 (277-972) 19,632 (7,948-40,035)

AD 0.08 (0.06-0.12) 2.49 (1.48-3.36)

EF 0.46 (0.42-0.50) 0.70 (0.62-0.83)

SF-CRP 0.9 (0.4-2.3) 16.0 (5.6-35.0)

PAC 0.10 (0.09-0.10) 0.10 (0.10-0.14)

SPA 0.56 (0.51-0.61) 0.86 (0.70-1.47)

SPB 0.50 (0.42-0.59) 1.16 (0.88-1.75)

TABLE 7: Biomarker feature summary statistics for training samples labeled as not infected and
infected using the labeling model
IQR: interquartile range, PMN%: percentage of neutrophils, A280: optical density (absorbance) measured at 280 nanometer wavelength, CP: microbial
antigen test Candida species panel, RBC: red blood cell, WBC: white blood cell, AD: alpha-defensin, EF: microbial antigen test Enterococcus species
panel, SF-CRP: synovial fluid C-reactive protein, PAC: microbial antigen test Cutibacterium acnes panel, SPA: microbial antigen test Staphylococcus
species panel A, SPB: microbial antigen test Staphylococcus species panel B

PJI Score Model

The PJI score model used 10 biomarker features; nine of the 11 features plus SP Sum (derived from SPA and
SPB) were trained on the labeling model's predicted labels. Summary statistics for the features and labels
used for model development (training) and clinical performance evaluation (validation) were compared
(Table 8). While most biomarker variables show statistical differences between the datasets, the overlapping
interquartile ranges suggest these differences lack clinical significance. Cohen’s d values demonstrate that
these differences have unimportant effect sizes.
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Feature Training, median (IQR) Validation, median (IQR) p-value Cohen’s d Effect size

PMN% 40.3 (26.9-67.3) 39.4 (25.5-66.9) 0.000 0.02 Very small

A280 0.63 (0.53-0.74) 0.62 (0.53-0.73) 0.435 0.01 Very small

CP 0.46 (0.39-0.59) 0.40 (0.35-0.48) 0.000 0.33 Small

RBC 16,000 (6,000-50,000) 16,000 (5,000-50,000) 0.134 0.00 Very small

WBC 717 (332-2,359) 645 (295-2,265) 0.000 0.04 Very small

AD 0.10 (0.07-0.42) 0.12 (0.09-0.39) 0.000 -0.06 Very small

EF 0.48 (0.43-0.58) 0.43 (0.37-0.57) 0.000 0.30 Small

SF-CRP 1.4 (0.5-5.1) 1.3 (0.4-4.8) 0.000 0.02 Very small

PAC 0.10 (0.09-0.10) 0.09 (0.08-0.11) 0.000 0.29 Small

SPA 0.58 (0.52-0.69) 0.56 (0.49-0.75) 0.000 0.07 Very small

SPB 0.54 (0.44-0.75) 0.48 (0.42-0.57) 0.000 0.25 Small

SP Sum 1.11 (0.97-1.45) 1.04 (0.92-1.31) 0.000 0.16 Very small

Predicted labels from labeling model, N (%)

Not Infected 64,637 (77.6) -

Infected 18,635 (22.4) -

TABLE 8: Feature summary statistics for the training (derivation and testing) and validation
cohorts. Note that predicted labels are not required for the validation cohort
IQR: interquartile range, PMN%: percentage of neutrophils, A280: optical density (absorbance) measured at 280 nanometer wavelength, CP: microbial
antigen test Candida species panel, RBC: red blood cell, WBC: white blood cell, AD: alpha-defensin, EF: microbial antigen test Enterococcus species
panel, SF-CRP: synovial fluid C-reactive protein, PAC: microbial antigen test Cutibacterium acnes panel, SPA: microbial antigen test Staphylococcus
species panel A, SPB: microbial antigen test Staphylococcus species panel B, SP Sum: sum of microbial antigen Staphylococcus species panel A and B

Analysis of SHAP values for each PJI score model input feature demonstrated that WBC, AD, and PMN%
were the most influential parameters, with clear separation in SHAP values for PJI positive (> 80) and PJI
negative (< 20) subgroups (Figure 3).
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FIGURE 3: SHAP values for the validation cohort. The biomarker inputs
(i.e., features) are listed on the y-axis in descending order of
importance, with the features contributing the most at the top of the list
as determined by the mean absolute SHAP value of the validation
samples. Relative feature contribution is depicted by the black bars on
the vertical axis. The SHAP value on the x-axis represents the feature
contribution to the overall PJI score of each sample. Box plots are
overlayed to show the distribution of SHAP values associated with the
PJI positive and PJI negative subgroups based on the PJI score. Color,
purple to yellow, represents the result value of the biomarker from
lowest to highest, respectively
SHAP: Shapley additive explanations, PJI: periprosthetic joint infection, A280: optical density (absorbance)
measured at 280 nanometer wavelength, WBC: white blood cell, PMN%: percentage of neutrophils, RBC: red
blood cell, AD: alpha-defensin, SF-CRP: synovial fluid C-reactive protein, EF: microbial antigen test Enterococcus
species panel, CP: microbial antigen test Candida species panel, PAC: microbial antigen test Cutibacterium acnes
panel, MID: microbial identification panel, ELISA: enzyme-linked immunosorbent assay

Clinical performance
The PJI score achieved a sensitivity of 99.3% (95% CI: 98.9% to 99.5%) and a specificity of 99.5% (95% CI:
99.4% to 99.6%) before the inconclusive category in the clinical reference was reclassified (Table 9). After
reclassifying the inconclusive category, sensitivity was 98.1% (95% CI: 97.6% to 98.4%), and specificity was
97.6% (95% CI: 97.4% to 97.9%) (Table 10). Based on the observed disease prevalence of 20.7% in this
population, PPV was 91.5% (95% CI: 90.7% to 92.3%), and the NPV was 99.5% (95% CI: 99.4% to 99.6%). The
proportion of equivocal results was 0.6% (Figure 4). This performance is consistent across different
subgroups (Table 11). Statistically significant differences in sensitivity and NPV were observed between the
knee and hip subgroups. The hip subgroup was less than one-tenth the size of the knee subgroup.
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PJI score PJI positive (> 5) PJI negative (< 3) Inconclusive (3–5) Total

PJI positive (> 80) 3,751 39 725 4,515

PJI negative (< 20) 14 15,521 638 16,173

Equivocal 14 37 79 130

Total 3,779 15,597 1,442 20,818

TABLE 9: Confusion matrix for PJI score categories and the clinical reference for the validation
cohort
PJI: periprosthetic joint infection

PJI score PJI positive PJI negative Total

PJI positive (> 80) 4,224 291 4,515

PJI negative (< 20) 54 16,119 16,173

Equivocal 30 100 130

Total 4,308 16,510 20,818

TABLE 10: Confusion matrix for PJI score categories and reclassified clinical reference for the
validation cohort
PJI: periprosthetic joint infection
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Group Equivocal Sensitivity Specificity PPV NPV

Validation (n = 20,818) 0.6% 98.1% 97.6% 91.5% 99.5%

Gender

Male (n = 11,005) 0.7% 98.0% 97.5% 91.1% 99.5%

Female (n = 9,792) 0.5% 98.2% 97.8% 92.0% 99.5%

p-value 0.098 0.636 0.204 0.299 0.579

Age

< 50 (n = 856) 0.8 % 97.6% 97.1% 89.8% 99.4%

50-59 (n = 3,531) 0.7% 97.7% 98.1% 93.0% 99.4%

60-69 (n = 7,716) 0.6% 97.4% 97.6% 91.3% 99.3%

70-79 (n = 6,769) 0.6% 98.6% 97.6% 91.5% 99.6%

≥ 80 (n = 1,946) 0.6% 98.8% 97.2% 90.4% 99.7%

p-value 1.000 0.389 0.364 0.451 0.345

Joint type

Knee (n = 19,168) 0.6% 98.3% 97.6% 91.6% 99.5%

Hip (n = 1,650) 0.9% 96.3% 97.5% 90.9% 99.0%

p-value 0.119 0.003 0.829 0.589 0.018

TABLE 11: Clinical performance on validation cohort subgroups based on the clinical reference
with reclassification of the inconclusive category
PPV: positive predictive value, NPV: negative predictive value

FIGURE 4: Sankey diagram showing the proportions of clinical
reference and the PJI score categories for the validation cohort
PJI: periprosthetic joint infection

Clinical performance in the culture-negative subgroup
We evaluated the PJI score’s performance in diagnosing culture-negative samples. Of the 17,959 culture-
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negative samples in the validation cohort, 1,805 (10.1%) were predicted PJI positive, 16,040 (89.3%) PJI
negative, and only 114 (0.6%) were predicted as equivocal. This classification strongly aligned with the
clinical reference, with 98.9% sensitivity (95% CI: 98.1% to 99.4%) and 99.5% specificity (95% CI: 99.4% to
99.6%). After reclassifying the inconclusive category, sensitivity and specificity remained high at 97.2% (95%
CI: 96.3% to 97.9%) and 97.6% (95% CI: 97.4% to 97.8%), respectively.

Of particular interest are the samples indicative of culture-negative PJI. The SHAP values for the PJI positive
(> 80) subgroup in the validation cohort illustrate the range of values for both culture-positive and culture-
negative subsets (Figure 5). In this subgroup, AD emerged as the most influential feature. The culture-
negative subset exhibits a broader range of SHAP values, consistent with broader biomarker distributions
observed in this population. Despite this, the influence of each feature on the model's output remains
similar between the culture-negative and culture-positive subsets.

FIGURE 5: SHAP values for the PJI positive (> 80) subgroup in the
validation cohort. The input biomarkers (i.e., features) are listed on the
y-axis in descending order of importance, with the features contributing
the most at the top of the list, as determined by the mean absolute
SHAP value within the subgroup. Relative feature contribution is
depicted by the black bars on the vertical axis. The SHAP value on the
x-axis represents the feature contribution to the overall PJI score of
each sample. Box plots are overlayed to show the distribution of SHAP
values associated with culture-negative and culture-positive samples
SHAP: Shapley additive explanations, PJI: periprosthetic joint infection, A280: optical density (absorbance)
measured at 280 nanometer wavelength, WBC: white blood cell, PMN%: percentage of neutrophils, RBC: red
blood cell, AD: alpha-defensin, SF-CRP: synovial fluid C-reactive protein, EF: microbial antigen test Enterococcus
species panel, CP: microbial antigen test Candida species panel, PAC: microbial antigen test Cutibacterium acnes
panel, MID: microbial identification panel, ELISA: enzyme-linked immunosorbent assay

Inconclusive subgroup analysis
Using the clinical reference, we evaluated the PJI score’s ability to predict preoperatively classified samples
as inconclusive. The PJI score classified 94.5% of these samples as either PJI positive or PJI negative, with AD
being the most influential feature (Figure 6). Only 79 out of 1,442 samples in this subgroup were categorized
as equivocal (PJI score between 20 and 80).
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FIGURE 6: SHAP values for the clinical reference inconclusive
subgroup in the validation cohort. The input biomarkers (i.e., features)
are listed on the y-axis in descending order of importance, with the
features contributing the most at the top of the list, as determined by
the mean absolute SHAP value within the subgroup. Relative feature
contribution is depicted by the black bars on the vertical axis. The
SHAP value on the x-axis represents the feature contribution to the
overall PJI score of each sample. Box plots are overlayed to show the
distribution of SHAP values associated with the PJI positive and PJI
negative subgroups based on the PJI score
SHAP: Shapley additive explanations, PJI: periprosthetic joint infection, A280: optical density (absorbance)
measured at 280 nanometer wavelength, WBC: white blood cell, PMN%: percentage of neutrophils, RBC: red
blood cell, AD: alpha-defensin, SF-CRP: synovial fluid C-reactive protein, EF: microbial antigen test Enterococcus
species panel, CP: microbial antigen test Candida species panel, PAC: microbial antigen test Cutibacterium acnes
panel, MID: microbial identification panel, ELISA: enzyme-linked immunosorbent assay

Notably, 1,356 of the 1,442 inconclusive samples were also culture-negative, meaning they would have
remained ambiguous even after culture results became available. With the PJI score, only 70 (5.2%) of these
ambiguous samples remained equivocal, while the remaining 1,286 could be classified as either PJI positive
or PJI negative.

Discussion
In this study, we only developed a PJI score based on preoperative SF biomarkers. We found it to be highly
predictive of the presence of PJI, with sensitivity and specificity exceeding 99% prior to reclassification of
the inconclusive cohort. Even after reclassifying and including these challenging samples, sensitivity and
specificity exceeded 97%, and the PJI score reduced the number of ambiguous diagnoses from 23.5% to 0.6%
compared to physician interpretation of PJI biomarker results [5]. This performance remained consistent
across different subgroups, though sensitivity was slightly lower for hips compared to knees (96.3% vs.
98.3%), likely due to the smaller sample size in the hip cohort.

The PJI score was developed using a complete set of contemporaneously performed biomarkers from
previously validated clinical diagnostic tests. We implemented a two-stage training pipeline to create a
classification model independent of existing diagnostic definitions. In the first stage, the labeling model
pipeline applied unsupervised learning techniques, including PCA and GMM, to reduce dimensionality and
cluster the data. This process identified two natural clusters, which were then used to assign labels, infected
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or not infected, to each specimen. In the second stage, the PJI score model pipeline used logistic regression
to generate a probability score based on these labels. Clinical decision limits were established by ROC curve
analysis and by incorporating user preference for decision limits near the extremes of 0 and 100. These
limits were then used to categorize the PJI score as PJI positive (> 80), PJI negative (< 20), or equivocal (20-
80).

Assigning infected labels using the GMM prediction threshold of 0.95 resulted in a disease prevalence of
22.4% within the training cohort, which closely aligns with the published prevalence of PJI in hip and knee
arthroplasty, ranging from 17% to 25% [17,18]. Lowering the probability threshold (e.g., 0.5) would have
classified more samples as infected, leading to a more sensitive but less specific algorithm. A lower threshold
may be preferable when evaluating performance against a more sensitivity-focused clinical reference, such
as the European Bone and Joint Infection Society (EBJIS) criteria, indicating a higher disease prevalence in
the population [25].

The performance of our model was compared to a modified 2018 ICM criteria, which has gained popularity
but is not the only clinical reference definition available. Efforts were made to reclassify inconclusive cases
to minimize bias when evaluating performance, yet the reported performance remains sensitive to the
reclassification methodology employed. As an alternative reclassification methodology, reclassifying all
samples with a modified ICM score ≥ 4 as PJI positive biases the PJI positive category, resulting in a
sensitivity of 91.6% and specificity of 98.9%, and alternatively, reclassifying all samples with an ICM score ≤
4 as PJI negative biases the PJI negative category, resulting in a sensitivity of 96.0% and specificity of 98.3%.
While we believe the probabilistic approach is more rigorous and objective, the results of this alternative
approach confirm that the PJI score performs robustly regardless of the inconclusive classification method
applied. We further maintain that the imperfection associated with any reclassification approach may very
well result in an underestimated performance of the PJI score after the clinical reference. Inconclusive
samples are reclassified.

Three studies have reported the development and performance of ML models for diagnosing PJI. Kuo et
al. [26] published a small study (N = 323) on an ML model incorporating serum biomarkers, culture results,
SF biomarkers, histology, and purulence. This model's performance was compared to the 2018 ICM criteria,
and patient-specific explanations for diagnosing PJI were provided. However, the model was trained using
infected and non-infected samples based on the ICM criteria, which is suboptimal since its accuracy is
validated using the same criteria used to train it. The current study’s PJI score leveraged a huge dataset. It
did not utilize clinical data such as purulence or histology, allowing for implementation by the laboratory
conducting the clinical testing.

Furthermore, instead of training and validating the model with the same criteria, this study assigned labels
to samples based on unsupervised natural clustering, followed by clinical reference standard validation. The
PJI score uses simple logistic regression and SHAP explanations, making the results easily interpretable for
clinicians. The other two studies, by Tao et al. [27] and Li et al. [28], applied deep learning methods for PJI
diagnosis. Tao et al. used convolutional networks to identify pathological sections of PJI patients, while Li et
al. utilized CT images for PJI diagnosis. These deep learning models face the "black box" problem [29], where
the decision-making process is not transparent, unlike the PJI score, which offers clear and interpretable
results for clinicians.

Opportunities for improved decision making
While various clinical definitions for PJI diagnosis exist, implementing them in practice remains
challenging. The use of the 2018 ICM criteria, for instance, is susceptible to human error [5,30]. Using this
ML-enabled PJI score automates the process of ordering, compiling, and scoring test results, thus reducing
the risk of human error. Additionally, some scoring criteria, such as the 2018 ICM, rely on culture results
before a diagnosis can be conclusively made, leading to delays in treatment decisions. In contrast, the PJI
score can be calculated within 24 hours of receipt by the laboratory, without the need for culture results.

The presence of culture-negative results complicates diagnosis and is a particular concern in chronic and
late-presenting cases [31]. The performance of the PJI score within the culture-negative subgroup was > 97%
for both sensitivity and specificity (supplementary appendix, culture-negative subgroup analysis). The PJI
score also showed similar biomarker contributions for culture-negative and culture-positive subsets, making
it a strong candidate for aiding decision-making when identifying culture-negative PJI.

This study found that most samples classified as inconclusive using a clinical definition/score were also
culture-negative. These cases experience delays due to waiting for culture results, and the diagnosis often
remains unclear even after results are available. For such cases, a diagnosis must frequently be made using
non-microbiological criteria, further delaying diagnosis [25]. This delay and ambiguity may increase the
likelihood of misdiagnosis and increase the clinical and economic burden of PJI [2,32,33]. The authors of the
EBJIS criteria for PJI state that failure to diagnose PJI correctly can lead to insufficient treatment and serious
consequences. On the other hand, overdiagnosis can result in unnecessary invasive procedures [4]. For
patients with inconclusive classification by the clinical reference and culture-negative results, the PJI score
significantly reduces ambiguity, providing 95% of these patients with a PJI positive (> 80) or PJI negative (<

 

2025 Parr et al. Cureus 17(5): e84055. DOI 10.7759/cureus.84055 16 of 19

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


20) classification within 24 hours.

Clinical definitions of PJI rapidly evolve, but adoption into clinical practice can be slow [34]. This PJI score is
ML software integrated with a standard LIS, which can be periodically re-evaluated and rapidly updated to
stay aligned with the latest definitions. This adaptability can help accelerate clinicians' adoption of new
definitions, ensuring faster implementation and improved patient care.

Limitations
This study has several limitations that warrant consideration. First, as a real-world data study, we did not
have access to clinical data or treatment decisions, which limits our ability to directly assess how the
diagnostic findings influenced patient management and outcomes. This analysis did not consider patient-
specific factors such as readmissions, comorbidities, immune deficiencies, and prior antibiotic treatments.
While these variables may be helpful for stratification of results, the large dataset used in this study reduces
the potential impact of these factors on overall performance.

Second, while the dataset used was derived from a single laboratory, a notable strength is the well-
controlled nature of the data, ensuring specimen and data integrity on a contemporaneously tested set of
biomarkers. However, external data validation would be necessary to confirm broader applicability to other
laboratories.

Third, the model used features not available from other laboratories, which include five direct microbial
antigen detection biomarkers. Without these biomarkers, the model would be significantly weaker, so if
modified to include only the widely available biomarkers, the PJI score would still be highly advantageous
compared to current PJI definitions.

Fourth, the study focused exclusively on hip and knee arthroplasties, excluding data from other joints such
as the shoulder, which may harbor different infectious organisms and exhibit distinct inflammatory
responses. Expanding the dataset to include additional joints in future research could provide a more
comprehensive model performance evaluation. Notably, the 2018 ICM definition of PJI is only established
for use with hip and knee arthroplasties, so incorporating other joints into the same study would require
definitions validated for those joints.

Fifth, some PJIs can be diagnosed with minimal investigations, and not all diagnostic tests are always
necessary. However, a more extensive diagnostic approach can lead to a more accurate diagnosis in some
cases [32]. This study emphasizes the importance of preoperative diagnostic rigor. Future work could explore
how the model performs in cases with fewer diagnostic tests.

Finally, the model was trained based on the disease prevalence observed in the current clinical setting.
Variations in PJI prevalence across different clinical settings may impact the model’s predictive values.
However, the strength of an ML model lies in its ability to adapt and fine-tune to diverse and changing
environments quickly. Future research should explore this adaptability by incorporating more varied clinical
cohorts.

Conclusions
The ML model and resulting PJI score demonstrated exceptional diagnostic accuracy by leveraging
unsupervised SF biomarker pattern clustering. The model substantially reduced diagnostic uncertainty by
definitively classifying most inconclusive cases, revealing their natural alignment with infected or non-
infected patterns. This performance was achieved without using SF culture results, enabling definitive
diagnostic information within 24 hours based solely on biomarkers. The clinical significance demonstrates
that an ML algorithm can match the diagnostic accuracy of complex clinical standards while transferring
analytical complexity from clinicians to laboratories, minimizing the implementation gap that hinders
current criteria-based approaches.

Additional Information
Author Contributions
All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the
work.

Concept and design:  Carl Deirmengian, Krista Toler, Jim Parr, Van Thai-Paquette, Alex McLaren

Acquisition, analysis, or interpretation of data:  Carl Deirmengian, Krista Toler, Jim Parr, Pearl
Paranjape, Van Thai-Paquette, Alex McLaren

Drafting of the manuscript:  Carl Deirmengian, Krista Toler, Jim Parr, Van Thai-Paquette, Alex McLaren

 

2025 Parr et al. Cureus 17(5): e84055. DOI 10.7759/cureus.84055 17 of 19

javascript:void(0)
javascript:void(0)


Critical review of the manuscript for important intellectual content:  Carl Deirmengian, Krista Toler,
Jim Parr, Pearl Paranjape, Van Thai-Paquette, Alex McLaren

Disclosures
Human subjects: Consent for treatment and open access publication was obtained or waived by all
participants in this study. WIRB-Copernicus Group Institutional Review Board issued approval 20150222.
Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue.
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: Carl Deirmengian declare(s) stock/stock
options from Trice. Advisory Board. Alex McLaren declare(s) non-financial support from Musculoskeletal
Infection Society. Board Member. Carl Deirmengian and Alex McLaren declare(s) stock/stock options from
Forecast Ortho. Advisory Board. Alex McLaren declare(s) stock/stock options from Sonoran Biosciences. Co-
founder. Krista Toler, Jim Parr and Van Thai-Paquette declare(s) employment and stock/stock options from
Zimmer Biomet. Pearl Paranjape declare(s) employment from Zimmer Biomet. Carl Deirmengian declare(s)
stock/stock options from Biostar Ventures. Advisor. Carl Deirmengian declare(s) stock/stock options from
Domain. Alex McLaren declare(s) stock/stock options from Hayes Diagnostics Inc. Co-founder. Krista Toler,
Jim Parr, Van Thai-Paquette and Pearl Paranjape declare(s) a patent from Zimmer Biomet. Patents (issued
and pending) in the field of diagnostics. . Intellectual property info: The patent application, No.
63/534,229, was filed on August 23, 2023. The patent is currently pending and has been published. Other
relationships: All authors have declared that there are no other relationships or activities that could appear
to have influenced the submitted work.

References
1. Ayoade F, Li D, Mabrouk A, Todd JR: Periprosthetic joint infection. StatPearls [Internet]. StatPearls

Publishing, Treasure Island (FL); 2025.
2. Premkumar A, Kolin DA, Farley KX, Wilson JM, McLawhorn AS, Cross MB, Sculco PK: Projected economic

burden of periprosthetic joint infection of the hip and knee in the United States. J Arthroplasty. 2021,
36:1484-9.e3. 10.1016/j.arth.2020.12.005

3. Shohat N, Bauer T, Buttaro M, et al.: Hip and knee section, what is the definition of a periprosthetic joint
infection (PJI) of the knee and the hip? Can the same criteria be used for both joints?: proceedings of
international consensus on orthopedic infections. J Arthroplasty. 2019, 34:325-7. 10.1016/j.arth.2018.09.045

4. McNally M, Sousa R, Wouthuyzen-Bakker M, et al.: The EBJIS definition of periprosthetic joint infection .
Bone Joint J. 2021, 103-B:18-25. 10.1302/0301-620X.103B1.BJJ-2020-1381.R1

5. Deirmengian C, McLaren A, Higuera C, Levine BR: Physician use of multiple criteria to diagnose
periprosthetic joint infection may be less accurate than the use of an individual test. Cureus. 2022, 14:31418.
10.7759/cureus.31418

6. Nelson SB, Pinkney JA, Chen AF, Tande AJ: Periprosthetic joint infection: current clinical challenges . Clin
Infect Dis. 2023, 77:34-45. 10.1093/cid/ciad360

7. Baker CM, Goh GS, Tarabichi S, Shohat N, Parvizi J: Synovial C-reactive protein is a useful adjunct for
diagnosis of periprosthetic joint infection. J Arthroplasty. 2022, 37:2437-43.e1. 10.1016/j.arth.2022.06.016

8. Saleh A, George J, Sultan AA, Samuel LT, Mont MA, Higuera-Rueda CA: The quality of diagnostic studies in
periprosthetic joint infections: can we do better?. J Arthroplasty. 2019, 34:2737-43.
10.1016/j.arth.2019.06.044

9. Hohmann AL, DeSimone CA, Lowenstein NA, Deirmengian C, Fillingham YA: Discrepancies in
periprosthetic joint infection diagnostic criteria reporting and use: a scoping review and call for a standard
reporting framework. Clin Orthop Relat Res. 2025, 10.1097/CORR.0000000000003457

10. Paranjape PR, Thai-Paquette V, Miamidian JL, et al.: Achieving high accuracy in predicting the probability
of periprosthetic joint infection from synovial fluid in patients undergoing hip or knee arthroplasty: the
development and validation of a multivariable machine learning algorithm. Cureus. 2023, 15:51036.
10.7759/cureus.51036

11. Janzing D, Minorics L, Blöbaum P: Feature relevance quantification in explainable AI: a causal problem .
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics in
Proceedings of Machine Learning Research. 2020 (ed): ML Research Press, 108:2907-16.

12. Bhargava A, López-Espina C, Schmalz L, et al.: FDA-authorized AI/ML tool for sepsis prediction:
development and validation. N Engl J Med. 2024, 1: 10.1056/AIoa2400867

13. Collins GS, Moons KG, Dhiman P, et al.: TRIPOD+AI statement: updated guidance for reporting clinical
prediction models that use regression or machine learning methods. BMJ. 2024, 385:078378. 10.1136/bmj-
2023-078378

14. Deirmengian C, Feeley S, Kazarian GS, Kardos K: Synovial fluid aspirates diluted with saline or blood reduce
the sensitivity of traditional and contemporary synovial fluid biomarkers. Clin Orthop Relat Res. 2020,
478:1805-13. 10.1097/CORR.0000000000001188

15. A single source for joint infection diagnosis . (2025). Accessed: 7 May 2025:
https://cdlaboratories.com/home/laboratory-testing/infection/.

16. Yeo IK, Johnson RA: A new family of power transformations to improve normality or symmetry . Biometrika.
2000, 87:954-9. 10.1093/biomet/87.4.954

17. Boddapati V, Fu MC, Mayman DJ, Su EP, Sculco PK, McLawhorn AS: Revision total knee arthroplasty for
periprosthetic joint infection is associated with increased postoperative morbidity and mortality relative to
noninfectious revisions. J Arthroplasty. 2018, 33:521-6. 10.1016/j.arth.2017.09.021

18. Bozic KJ, Kurtz SM, Lau E, et al.: The epidemiology of revision total knee arthroplasty in the United States .
Clin Orthop Relat Res. 2010, 468:45-51. 10.1007/s11999-009-0945-0

 

2025 Parr et al. Cureus 17(5): e84055. DOI 10.7759/cureus.84055 18 of 19

https://www.ncbi.nlm.nih.gov/sites/books/NBK448131/
https://dx.doi.org/10.1016/j.arth.2020.12.005
https://dx.doi.org/10.1016/j.arth.2020.12.005
https://dx.doi.org/10.1016/j.arth.2018.09.045
https://dx.doi.org/10.1016/j.arth.2018.09.045
https://dx.doi.org/10.1302/0301-620X.103B1.BJJ-2020-1381.R1
https://dx.doi.org/10.1302/0301-620X.103B1.BJJ-2020-1381.R1
https://dx.doi.org/10.7759/cureus.31418
https://dx.doi.org/10.7759/cureus.31418
https://dx.doi.org/10.1093/cid/ciad360
https://dx.doi.org/10.1093/cid/ciad360
https://dx.doi.org/10.1016/j.arth.2022.06.016
https://dx.doi.org/10.1016/j.arth.2022.06.016
https://dx.doi.org/10.1016/j.arth.2019.06.044
https://dx.doi.org/10.1016/j.arth.2019.06.044
https://dx.doi.org/10.1097/CORR.0000000000003457
https://dx.doi.org/10.1097/CORR.0000000000003457
https://dx.doi.org/10.7759/cureus.51036
https://dx.doi.org/10.7759/cureus.51036
http://proceedings.mlr.press/v108/janzing20a
https://dx.doi.org/10.1056/AIoa2400867
https://dx.doi.org/10.1056/AIoa2400867
https://dx.doi.org/10.1136/bmj-2023-078378
https://dx.doi.org/10.1136/bmj-2023-078378
https://dx.doi.org/10.1097/CORR.0000000000001188
https://dx.doi.org/10.1097/CORR.0000000000001188
https://cdlaboratories.com/home/laboratory-testing/infection/
https://cdlaboratories.com/home/laboratory-testing/infection/
https://dx.doi.org/10.1093/biomet/87.4.954
https://dx.doi.org/10.1093/biomet/87.4.954
https://dx.doi.org/10.1016/j.arth.2017.09.021
https://dx.doi.org/10.1016/j.arth.2017.09.021
https://dx.doi.org/10.1007/s11999-009-0945-0
https://dx.doi.org/10.1007/s11999-009-0945-0


19. Zorn C: A solution to separation in binary response models . Polit Anal. 2005, 13:157-70.
10.1093/pan/mpi009

20. Miamidian JL, Toler K, McLaren A, Deirmengian C: Synovial fluid C-reactive protein clinical decision limit
and diagnostic accuracy for periprosthetic joint infection. Cureus. 2024, 16:52749. 10.7759/cureus.52749

21. Toler KO, Paranjape PR, McLaren A, Levine B, Ong A, Deirmengian C: Nationwide results of microorganism
antigen testing as a component of preoperative synovial fluid analysis. J Bone Joint Surg Am. 2023, 105:448-
54. 10.2106/JBJS.22.00807

22. Deirmengian C, Toler K, Sharma V, Miamidian JL, McLaren A: The false-positive rate of synovial fluid
culture at a single clinical laboratory using culture bottles. Cureus. 2024, 16:55641. 10.7759/cureus.55641

23. Bauer TW, Bedair H, Creech JD, et al.: Hip and knee section, diagnosis, laboratory tests: proceedings of
international consensus on orthopedic infections. J Arthroplasty. 2019, 34:351-9. 10.1016/j.arth.2018.09.019

24. Obuchowski NA: Sample size calculations in studies of test accuracy . Stat Methods Med Res. 1998, 7:371-92.
10.1177/096228029800700405

25. McNally M, Sigmund I, Hotchen A, Sousa R: Making the diagnosis in prosthetic joint infection: a European
view. EFORT Open Rev. 2023, 8:253-63. 10.1530/EOR-23-0044

26. Kuo FC, Hu WH, Hu YJ: Periprosthetic joint infection prediction via machine learning: comprehensible
personalized decision support for diagnosis. J Arthroplasty. 2022, 37:132-41. 10.1016/j.arth.2021.09.005

27. Tao Y, Hu H, Li J, Li M, Zheng Q, Zhang G, Ni M: A preliminary study on the application of deep learning
methods based on convolutional network to the pathological diagnosis of PJI. Arthroplasty. 2022, 4:49.
10.1186/s42836-022-00145-4

28. Li R, Yang F, Liu X, Shi H: HGT: A hierarchical GCN-based transformer for multimodal periprosthetic joint
infection diagnosis using computed tomography images and text. Sensors (Basel). 2023, 23:5795.
10.3390/s23135795

29. Chong YY, Chan PK, Chan VW, et al.: Application of machine learning in the prevention of periprosthetic
joint infection following total knee arthroplasty: a systematic review. Arthroplasty. 2023, 5:38.
10.1186/s42836-023-00195-2

30. Forte SA, D'Alonzo JA, Wells Z, Levine B, Sizer S, Deirmengian C: Laboratory-reported normal value ranges
should not be used to diagnose periprosthetic joint infection. Cureus. 2022, 14:28258. 10.7759/cureus.28258

31. van Sloten M, Gómez-Junyent J, Ferry T, et al.: Should all patients with a culture-negative periprosthetic
joint infection be treated with antibiotics? : a multicentre observational study. Bone Joint J. 2022, 104-
B:183-8. 10.1302/0301-620X.104B1.BJJ-2021-0693.R2

32. Sandiford NA, Franceschini M, Kendoff D: The burden of prosthetic joint infection (PJI) . Annals of Joint.
2021, 6:

33. Gutowski CJ, Chen AF, Parvizi J: The incidence and socioeconomic impact of periprosthetic joint infection:
United States perspective. Periprosthetic Joint Infections. Kendoff D, Morgan-Jones R, Haddad F (ed):
Springer, Cham; 2016. 19-26. 10.1007/978-3-319-30091-7_2

34. Beauchemin M, Cohn E, Shelton RC: Implementation of clinical practice guidelines in the health care
setting: a concept analysis. ANS Adv Nurs Sci. 2019, 42:307-24. 10.1097/ANS.0000000000000263

 

2025 Parr et al. Cureus 17(5): e84055. DOI 10.7759/cureus.84055 19 of 19

https://dx.doi.org/10.1093/pan/mpi009
https://dx.doi.org/10.1093/pan/mpi009
https://dx.doi.org/10.7759/cureus.52749
https://dx.doi.org/10.7759/cureus.52749
https://dx.doi.org/10.2106/JBJS.22.00807
https://dx.doi.org/10.2106/JBJS.22.00807
https://dx.doi.org/10.7759/cureus.55641
https://dx.doi.org/10.7759/cureus.55641
https://dx.doi.org/10.1016/j.arth.2018.09.019
https://dx.doi.org/10.1016/j.arth.2018.09.019
https://dx.doi.org/10.1177/096228029800700405
https://dx.doi.org/10.1177/096228029800700405
https://dx.doi.org/10.1530/EOR-23-0044
https://dx.doi.org/10.1530/EOR-23-0044
https://dx.doi.org/10.1016/j.arth.2021.09.005
https://dx.doi.org/10.1016/j.arth.2021.09.005
https://dx.doi.org/10.1186/s42836-022-00145-4
https://dx.doi.org/10.1186/s42836-022-00145-4
https://dx.doi.org/10.3390/s23135795
https://dx.doi.org/10.3390/s23135795
https://dx.doi.org/10.1186/s42836-023-00195-2
https://dx.doi.org/10.1186/s42836-023-00195-2
https://dx.doi.org/10.7759/cureus.28258
https://dx.doi.org/10.7759/cureus.28258
https://dx.doi.org/10.1302/0301-620X.104B1.BJJ-2021-0693.R2
https://dx.doi.org/10.1302/0301-620X.104B1.BJJ-2021-0693.R2
https://aoj.amegroups.org/article/view/6209
https://dx.doi.org/10.1007/978-3-319-30091-7_2
https://dx.doi.org/10.1007/978-3-319-30091-7_2
https://dx.doi.org/10.1097/ANS.0000000000000263
https://dx.doi.org/10.1097/ANS.0000000000000263

	Probability Score for the Diagnosis of Periprosthetic Joint Infection: Development and Validation of a Practical Multi-analyte Machine Learning Model
	Abstract
	Background and objective
	Materials and methods
	Results
	Conclusions

	Introduction
	Materials And Methods
	Study design
	Study data
	TABLE 1: Inclusion and exclusion criteria

	Data collection
	TABLE 2: Biomarker testing

	Machine learning model development
	FIGURE 1: Two-stage model training pipeline that incorporated unsupervised and supervised methodologies. Feature selection refers to the set of input biomarkers used for each stage. Feature scaling refers to linear and non-linear transformations applied to the selected input biomarkers
	FIGURE 2: Visualization of unsupervised and supervised learning stages limited to two PCA components and a random subset of the training samples (n = 1,000). Each panel includes the 0.95 probability threshold, determined by the GMM prediction, as a dashed line. Training samples that exceeded a 0.95 probability threshold for the infected cluster were labeled infected, while all other samples were labeled not infected

	Performance assessment
	TABLE 3: Impact of decision limits for a PJI positive diagnosis using the PJI score. Sensitivity and specificity are calculated based on the derivation cohort. Inconclusive diagnoses by clinical reference are not included
	TABLE 4: Criteria used to establish infection classification using the clinical reference. Infection was classified as follows: ≥ 6 points: PJI positive; ≤ 2 points: PJI negative; and 3-5 points: inconclusive
	TABLE 5: Specificity and sensitivity of individual SF biomarkers used to develop reclassification rules. MID includes a positive microbial identification using a combination of the five microbial antigen detection biomarkers

	Model interpretability
	Statistical analysis

	Results
	Baseline characteristics
	TABLE 6: SF samples and characteristics between training (derivation and testing) and validation cohorts

	Machine learning model development
	TABLE 7: Biomarker feature summary statistics for training samples labeled as not infected and infected using the labeling model
	TABLE 8: Feature summary statistics for the training (derivation and testing) and validation cohorts. Note that predicted labels are not required for the validation cohort
	FIGURE 3: SHAP values for the validation cohort. The biomarker inputs (i.e., features) are listed on the y-axis in descending order of importance, with the features contributing the most at the top of the list as determined by the mean absolute SHAP value of the validation samples. Relative feature contribution is depicted by the black bars on the vertical axis. The SHAP value on the x-axis represents the feature contribution to the overall PJI score of each sample. Box plots are overlayed to show the distribution of SHAP values associated with the PJI positive and PJI negative subgroups based on the PJI score. Color, purple to yellow, represents the result value of the biomarker from lowest to highest, respectively

	Clinical performance
	TABLE 9: Confusion matrix for PJI score categories and the clinical reference for the validation cohort
	TABLE 10: Confusion matrix for PJI score categories and reclassified clinical reference for the validation cohort
	TABLE 11: Clinical performance on validation cohort subgroups based on the clinical reference with reclassification of the inconclusive category
	FIGURE 4: Sankey diagram showing the proportions of clinical reference and the PJI score categories for the validation cohort

	Clinical performance in the culture-negative subgroup
	FIGURE 5: SHAP values for the PJI positive (> 80) subgroup in the validation cohort. The input biomarkers (i.e., features) are listed on the y-axis in descending order of importance, with the features contributing the most at the top of the list, as determined by the mean absolute SHAP value within the subgroup. Relative feature contribution is depicted by the black bars on the vertical axis. The SHAP value on the x-axis represents the feature contribution to the overall PJI score of each sample. Box plots are overlayed to show the distribution of SHAP values associated with culture-negative and culture-positive samples

	Inconclusive subgroup analysis
	FIGURE 6: SHAP values for the clinical reference inconclusive subgroup in the validation cohort. The input biomarkers (i.e., features) are listed on the y-axis in descending order of importance, with the features contributing the most at the top of the list, as determined by the mean absolute SHAP value within the subgroup. Relative feature contribution is depicted by the black bars on the vertical axis. The SHAP value on the x-axis represents the feature contribution to the overall PJI score of each sample. Box plots are overlayed to show the distribution of SHAP values associated with the PJI positive and PJI negative subgroups based on the PJI score


	Discussion
	Opportunities for improved decision making
	Limitations

	Conclusions
	Additional Information
	Author Contributions
	Disclosures

	References


